Q:

Find the Laplace transform of f(t) when:f(t)= 9 , 0 = or < t < 2f(t)= (t-5)^2 , 2= or < t < 5f(t)= 2te^6t , t > or = 5

Accepted Solution

A:
[tex]f(t)=\begin{cases}9&\text{for }0\le t<2\\(t-5)^2&\text{for }2\le t<5\\2te^{6t}&\text{for }t\ge5\end{cases}[/tex]and presumably 0 for [tex]t<0[/tex]. We can express [tex]f(t)[/tex] in terms of the unit step function,[tex]u(t-c)=\begin{cases}1&\text{for }t\ge c\\0&\text{for }t<c\end{cases}[/tex][tex]f(t)=9(u(t)-u(t-2))+(t-5)^2(u(t-2)-u(t-5))+2te^{6t}u(t-5)[/tex]Quick explanation: [tex]9u(t)=9[/tex] for [tex]t\ge0[/tex], and [tex]9u(t-2)=9[/tex] for [tex]t\ge2[/tex]. So subtracting these will cancel the value of 9 for all [tex]t\ge2[/tex] and leave us with the value of 9 over the interval we want, [tex]0\le t<2[/tex]. The same reasoning applies for the other 3 terms.Recall the time displacement theorem:[tex]\mathcal L_s\{f(t-c)u(t-c)\}=e^{-sc}\mathcal L_s\{f(t)\}[/tex]By this property, we have[tex]\mathcal L_s\{9u(t)\}=\mathcal L_s\{9\}=\dfrac9s[/tex][tex]\mathcal L_s\{9u(t-2)\}=e^{-2s}\mathcal L_s\{9\}=\dfrac{9e^{-2s}}s[/tex][tex]\mathcal L_s\{(t-5)^2u(t-2)\}=\mathcal L_s\{((t-2)-3)^2u(t-2)\}[/tex][tex]=e^{-2s}\mathcal L_s\{(t-3)^2\}=\left(\dfrac2{s^3}-\dfrac6{s^2}+\dfrac9s\right)e^{-2s}[/tex][tex]\mathcal L_s\{(t-5)^2u(t-5)\}=e^{-5s}\mathcal L_s\{t^2\}=\dfrac{2e^{-5s}}{s^3}[/tex][tex]\mathcal L_s\{2te^{6t}u(t-5)\}=\mathcal L_s\{2e^{30}(t-5)e^{6(t-5)}+10e^{30}e^{6(t-5)}\}[/tex][tex]=2e^{30-5s}\mathcal L_s\{te^{6t}+5e^{6t}\}=2e^{30-5s}\left(\dfrac1{(s-6)^2}+\dfrac5{s-6}\right)[/tex]Putting everything together, we end up with[tex]\boxed{\mathcal L_s\{f(t)\}=\dfrac{(2-6s)e^{-2s}-2e^{-5s}}{s^3}+\dfrac9s-\dfrac{2e^{30-5s}(29-5s)}{(s-6)^2}}[/tex]